lm	plementation

End

Effective use of XEON PHI accelerators for the PSC (Plasma Simulation Code)

Karl-Ulrich Bamberg and Hartmut Ruhl

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	

Inhaltsverzeichnis

- Implementation
- 2 Scaling Hardware measurements
- 3 Large scale tests
- Code adaptions

All Logos are trademarks of there respective companies. Picture see [1, Intel presentation LRZ]

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
●000	00	000	0	
Comparison of approache	s			

Offloading: Copy particles up and down - Pipelining

Picture from [1, Intel presentation LRZ]

Status: Implemented, improvements in memory awareness and pipelining possible.

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
0000				
Comparison of approaches	5			

Bandwidth to flop calculation

- Calculation speed: 1 TFLOP/s Double Precision
- 1 Particle: 80 Byte
- Assume pipe lining bandwidth full duplex: 5 GB/s peak \rightarrow 62.500.000 Particle/s
- \approx 16.000 FLOP/Particle necessary

Real life bandwidth usually: 3 GB/s \rightarrow 26.000 FLOP/Particle necessary for full utilization.

Boris pusher utilizes around 2.000 (TODO) FLOP/particles

Q.E.D. event generators issue massive FLOP/particles

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
0000				
Comparison of approa	ches			

Native mode: Run totally on MIC, communicate from MIC to MIC

Picture from [1, Intel presentation LRZ]

Contra

- Libraries (hdf5, szip, mpi, fortran) need to be available for MIC
- Minor adaption to buildsystem
- Harder load balancing
- Wastes CPU resources

Pro

- Only Necessary Particles are transferred -¿ circumvent limited Bandwidth, everything on Card (Fields and things)
- Less code adaption

Status:

Working on Stampede, due to necessary MPI library.

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
000●	00	000	0	
Comparison of approaches	;			

Native heterogeneous mode

- Use Xeon-Ranks for memory intensive tasks: E. g. wide grid area with thin plasma.
- Use MIC-Ranks with many threads for heavy calculations: E.g. dense plasma (up to the memory limit), or Q.E.D. event generators
- Overcome memory limit
- Bypass PCIe bottleneck
- Utilize dense CPU performance

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
0000	●0	000	0	

Native strong scaling MIC

15-480 cores on different nr. of accelerators

Logical cores/Hyperthreading yield up to 30% speed up. No memory bandwidth bottleneck \rightarrow no speed up on multiple cards with same total nr. of cores.

Karl-Ulrich Bamberg and Hartmut Ruhl Effective use of XEON PHI accelerators for the PSC (Plasma Simulation Code)

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
0000	⊙●	000	0	

Native strong scaling MIC

15-480 cores on different nr. of accelerators

Communication no problem: Different nr. of co-processors with same total core count, does not affect total calculation time. With communication, no speedup by hyperthreading.

Karl-Ulrich Bamberg and Hartmut Ruhl Effective use of XEON PHI accelerators for the PSC (Plasma Simulation Code)

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
		000		

۱d

MIC-Scaling: 4 to 128 accelerators (240 to 8000 Cores)

(512+ and more were not requestable, 256 only in hybrid mode till now)

Karl-Ulrich Bamberg and Hartmut Ruhl

End

Hybrid MIC-Scaling up to 256 accelerators (8192 Cores)

Scaling matrix for our Intel XEON PHI adaption, running in hybrid mode (4 cores on host and 60 cores on MIC).

(512+ and more were not requestable)

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	
0000	00	00●	0	

Host-Scaling from 32 to 4096 cores

PSC scaling

Scaling matrix for the host processors on Stampede.

Karl-Ulrich Bamberg and Hartmut Ruhl

Implementation 0000	Scaling - Hardware measurements 00	Large scale tests 000	Code adaptions	

- In-Patch-Parallelization (Status: 80%)
- Code adaption for Compiler-Autovectorization (Status: 50%)
 - \rightarrow Also AVX and maintainability benefit from this.
- Load-Balancing:
 - Memory awareness for MICs (Status: Memory limits already there, adaption trivial)
 - Hybrid MPI-openMP parallelization
 - \rightarrow more threads for heavy patches.

(Status: Already implemented, combine with load-balancer) Also possible for CPU acceleration (Status: Planned)

Ultimate Solution

Additional Parallelization-Level: Shadow-Patches (Status: Possible as post-doc project)

Implementation	Scaling - Hardware measurements	Large scale tests	Code adaptions	End
0000	00	000	0	

Thank you for your attention !

Karl-Ulrich Bamberg and Hartmut Ruhl

Dr. Michael Klemm. "Intel Xeon PHI Talk". Presentation at LRZ. Feb. 2014.

Karl-Ulrich Bamberg and Hartmut Ruhl